Quick Questions 9 Discrete Probability Distributions

- I. Place the letter of the appropriate definition or formula next to the concept or value it defines.
 - 1. I 2. Hor J 3. A 4. E 5. Jor H 6. B 7. D 8. C 9. F 10. G
- II. The sales manager of the XYZ Company made the following estimates of next year's sales.

Sales (x) (millions of \$)	P(x)	<i>x</i> • <i>P</i> (<i>x</i>)	x ²	$x^2 \bullet P(x)$
4	0.2	.80	16	3.20
5	0.4	2.00	25	10.00
5	0.4	2.00	25	10.00
Totals	1.0	4.80		23.20

A. What are expected sales for next year?

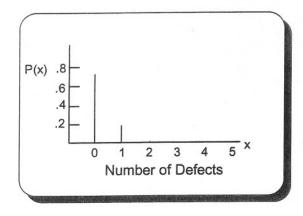
$$E(x) = \sum [x \bullet P(x)] = $4.80$$

B. Calculate the variance for this <u>probability</u> distribution.

$$V(x) = [\sum x^2 \bullet P(x)] - [E(x)]^2$$

$$\begin{cases} V(x) = $23.20 - ($4.80)^2 \\ = $23.20 - $23.04 \\ = $.16 \end{cases}$$

- III. Five percent of the parts coming off an assembly line are defective.
 - A. Using the binomial formula or your statistics software, calculate the probability of exactly 2 out of 5 parts being defective.


$$P(x) = \frac{n!}{x!(n-x)!} p^x q^{n-x}$$

$$P(2) = \frac{5!}{2!(5-2)!}.05^{2} \times .95^{5-2}$$

$$= \frac{5 \times 4 \times 3 \times 2 \times 1}{2 \times 1 \times 3 \times 2 \times 1} \times .0025 \times .857375$$

$$= 10 \times .0021 = .021 = 2.1\%$$

B. Determine the distribution of defective parts using a table in the back of this book. Graph the distribution.

	bability Distribution , and q = 1 - p = .95
# of sales (x)	P(x)
0	.774
1	.204
2	.021
3	.001
4	.000
5	000
Total	1.000